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PSEUDO-CONVEX FUNCTIONS*

O. L. MANGASARIAN
Abstract. The purpose of this work is to introduce pseudo-convex functions and

to describe some of their properties and applications. The class of all pseudo-convex
functions over a convex set C includes the class of all differentiable convex functions
on C and is included in the class of all differentiable quasi-convex functions on C.
An interesting property of pseudo-convex functions is that a local condition, such as
the vanishing of the gradient, is a global optimality condition. One of the main
results of this work consists of showing that the Kuhn-Tucker differential conditions
are sufficient for optimality when the objective function is pseudo-convex and the
constraints are quasi-convex. Other results of this work are a strict converse duality
theorem for nathematical programming and a stability criterion for ordinary dif-
ferential equations.

1. Introduction. Throughout this work, we shall be concerned with the
real, scalar, single-valued, differentiable function O(x) defined on the non-
empty open set D in the m-dimensional Euclidean space Em. We let C be a
subset of D and let V denote the m X 1 partial differential operator

here he prime denotes he rnspose. e sy h (z) s po-oz

(1.1) (x x)’VO(x) >->_ 0 implies 0(x2) >-O(x).

We say that O(x) is pseudo-concave on C if for every x and x in C,

(1.2) (x2- x)’VO(x1) <= 0 implies 0(x2) <-O(x).

Thus O(x) is pseudo-concave if and only if -O(x) is pseudo-convex. In
the subsequent paragraphs we shall confine our remarks to pseudo-convex
functions. Analogous results hold for pseudo-concave functions by the
appropriate multiplication by -1.
We shall relate the pseudo-convexity concept to the previously estab-

lished notions of convexity, quasi-convexity [1], [2] and srict quasi-con-
vexity [3], [5].
The function O(x) is said to be convex on C, [2], if C is convex and if for

every x and x in C,

(1.3) O(hx - (1 h)x2) _<- O(X1) " (1 )t)0(X2)
* Received by the editors March 4, 1965.
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282 o.L. MANGASARIAN

for every X such that 0 =< X =< 1. Equivalently, O(x) is convex on C if

(1.4) O(x2) --O(X1) ’ (X2- xi)tVx,O(X1)
for every x and x in C.
The function 0(x) is said to be quasi-convex on C, [1], [2], if C is convex

and if for every x and x in C,

(1.5) O(x) <= 0(x1) implies O(hx - (1 h)x2) _-< O(x)
for every }, such that 0 }, =< 1. Equivalently, 0(x) is quasi-convex on
C if

(1.6) O(x) O(X1) implies (X X1) Vx (X1) O.

The function 0(x) is said to be strictly quasi-convex on C, [3], [5], if C is
convex and if for every x and x in C, x x,

(1.7) t(x) < 0(X1) implies O(X - (1 k)x) < O(x1)
for every X such that 0 < X < 1. It has been shown [5] that every lower
semicontinuous strictly quasi-convex function is quasi-convex but not
conversely.

In the next section we shall give some properties of pseudo-convex func-
tions and show how these properties can be used to generalize some previous
results of mathematical programming, duality theory and stability theory
of ordinary differential equations. Theorem 1 generalizes the Arrow-
Enthoven version [1, Theorem 1] of the Kuhn-Tucker differential sufficient
optimality conditions for a mathematical programming problem. Theorem
2 gives a generalization of Huard’s converse duality theorem of mathe-
matical programming [4, Theorem 2] and Theorem 3 ge.neralizes a sta-
bility criterion for equilibrium points of nonlinear ordinary differential
equations [8, Theorem 1].

2. Properties of pseudo-convex functions and applications. In this sec-
tion we shall give some properties of pseudo-convex functions and some
extensions of the results of mathematical programming and ordinary dif-
ferential equations.
PROPERTY 0. Let O(x) be pseudo-convex on C. If V0(x) 0, then x is a

global minimum over C.
Proof. For any x in C,

( x)’v0(x) 0,
and hence by (1.1),

O(x) >__ O(x),
which establishes the property.

D
ow

nl
oa

de
d 

10
/1

9/
18

 to
 1

28
.1

14
.6

3.
91

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



PSEUDO-CONVEX FUNCTIONS 283

PIOeERTY 1. Let C be convex. If O(x) is convex on C, then O(x) is pseudo-
convex in C, but not conversely.

Proof. If 0(x) is convex on C, then by (1.4),

(x x) V0(x >= 0 implies 0(x

which is precisely (1.1). That the converse is not necessarily true can be
seen from the exalnple

t(x) - x + x, x E,
which is pseudo-convex on E but not convex)
PIOPEnTY 2. Let C be convex. If O(x) is pseudo-convex on C, then O(x) is

strictly quasi-convex (and hence quasi-convex) on C, but not conversely.
Proof. Let O(x) be pseudo-convex on C. We shall assume that O(x) is not

strictly quasi-convex on C and show that this leads to a contradiction. If
O(x) is not strictly quasi-convex on C, then it follows from (1.7) that there
exist x x in C such that

(2.1) O(x) < O(xX),
and

(2.2) 0(X) __>-- 0(X1),
for some x L, where

(2.3) L {x Ix Xx+ (1 ,)x,0 < < 1}.

Hence there exists an L such that

o() mx O(x),
x

(2.4)

where

(2.5)

Now define

(2.6)

Hence

(2.7)

where

(2.8)

L L U {X X2}.

f(h) 0((1 h)x -}- hx2),

o(e) f(x),

0=<),=< 1.

a (1 X)x1-k Xx=, 0 < X < 1.

To see that x -k x is pseudo-convex, note that V.0(x) 1 q- 3x > 0. Hence
(x x)’V.O(x) >= 0 implies that x >- x and x >- (x) a, and thus

O() O(x) (x + x) (xo + (0)) >= 0.
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284 o.L. MANGASARIAN

We have from (2.4) through (2.7) that f(h) chieves its mximum at X.
Hence it follows by the differentibility of 0(x) nd the chain rule that

(2.9) (x" xl)tvx 0(’) df() 0,
dh

Since

(2.10) x a x 1 X)x XZ ]. X) (X X1),
it follows from (2.9) and (2.10) and the fact that X < 1, that

(2.11) (x=- a)’V0(a) 0.

But by the pseudo-convexity of O(x), (2.11) implies that

(2.12) 0(x=) >= 0(a).

Hence from (2.1) and (2.12),

O(x) > o(,),

which contradicts (2.4). Hence 0(x) must be srictly quasi-convex on C.
That the converse is not necessarily true can be seen from the example

0(x) =- xa, x E,
which is strictly quasi-convex on E, but not pseudo-convex.
PROPERTY 3. Let C be convex. If O(x) is pseudo-convex on C, then every

local minimum is a global minimum.
Proof. By Property 2, 0(x) is strictly quasi-convex on C. Now if 2 is a

local minimmn, then

(2.13) 0(a) =< O(x) for every x N(a) f’l C,

where N(2) is some neighborhood of 2. Let x be any point in C, but not in
N(a) f’l C. Then there exists a X, 0 < Y, < 1, such that

2-- ((1 X)a q- Xx) N(a) C.

Now if 0(x) < (2), then by the strict quasi-convexity of 0(x),

e() > e(),

which contradicts (2.13). Hence O(x) >= O(a), which proves Property 3.
THEOREM 1..Let O(x), g(x),..., gn(X) be differentiable functions on

E Let C be a convex set in E and O(x) be pseudo-convex on C and g(x),
g(x) be quasi-convex on C. If there exist an x C and yo E satisfy-

A local minimum is an 2 C such that 0(2) =< 0(x) for all x N(2) l C, where
N(2) is some neighborhood of 2.
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PSEUDO-CONVEX FUNCTIONS 285

ing the Kuhn-Tucker &erential conditions [7], namely,

(2.14) V0(x) + Vy gi(x O,
i==1-(2.15) yi g(x O,

i1

g(x) <= O,

y > O,

(2.16)

(2.17)

then

,n,

n,

(2..as) e(x) i. {O(x)] e(x) __< o, i , ..., n}.
xEC

Proof. The proof is similar to part of the proof of [1, Theorem 1]. Let

I {ilg(x) < 0}.

Hence g(x) 0 for i ( I. From (2.15), (2.16) and (2.1.7) it follows that

(2.19) Yi 0 for i I.

Let
R lx]g(x) <= O, i 1, 2, n, x C}.

Then g(x) <= gi(x) for i ([ I, x R. Hence by the quasi-convexity of

the g’s on R it follows from (1.6) that

(2.20) (x x)’Vg(x) -< 0 for i I, x R.

Hence by (2.20) and (2.17) we have that

(2.21) (x xO),7 xY gi( <= 0 for x R,

and from (2.19) we have

(2.22) (x x)’V xygi( 0 for x R.
iEI

Hence (2.21) and (2.22) imply

(x x)’V

_
yg(x) <= 0 for x R,

i=l

which in turn implies, by (2.14), that

(2.23) (x x)’VO(x) >= 0 for x R.

But by the pseudo-convexity of 0(x) on R, (2.23) implies that

O(x) >= O(x) for x R.
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286 o.L. MANGASARIAN

For the case when the set I is empty, the above proof is modified by
deleting (2.19), (2.22) and references thereto. For the case when I

11, 2, n} the above proof is modified by deleting that part of the
proof between (2.19) and (2.22) and references thereto.

It should be noted here that the above theorem is indeed a generalization
of Arrow and Enthoven’s result [1, Theorem 1]. Every case covered there
is covered by the above theorem, but not conversely. An example of a case
not covered by Arrow and Enthoven is the following one"

min[--e-X x _-< 0}.
xE

Another application of pseudo-convex functions may be found in duality
theory. Consider the primal problem

(PP) rain {O(x)l g(x) <= 0},
x Em

where O(x) is a scalar function on E and g(x) is an n X 1 vector function
on Em. For the above problem Wolfe [10] has defined the dual problem as

(DP)

where

max {b(x, Y)l V(x, y) 0, y 0},
x Em,y E

(x, y) O(x) + y’g(x).
Under appropriate conditions Wolfe has shown [10, Theorem 2] that if
x solves (PP), then x and some y0 solve (DP). Conversely, under some-
what stronger conditions, Huard [4, Theorem 2] showed that if (x, y0)
solves (DP), then x solves (PP). Both Wolfe and Huard required, among
other things, that O(x) and the components of g(x) be convex. We will now
show that Huard’s theorem can be extended to the case where O(x) is
pseudo-convex and the components of g(x) are quasi-convex, and that
Wolfe’s theorem is not amenable to such an extension.
THEOREM 2. (Strict converse duality theorem). Let O(x) be a pseudo-convex

function on E and let the components of g(x) be differentiable quasi-convex
functions on Em.

(a) If (x, yO) solves (DP) and (x, yO) is twice continuously differeutiable
with respect to x in a neighborhood of x, and if the Hessian of (x, yO) with
respect to x is nonzero at x, then x solves PP.

(b) Let x solve (PP) and let g(x) <= 0 satisfy the Kuhn-Tucker constraint
qualification [7]. It does not necessarily follow that x and some yO solve (DP).

Proof. (a) The assumption that the Hessian of (x, y0) with respect to
x is nonzero at x insures the validity of the following Kuhn-Tucker neces-

For the difference between "duality" and "strict duality," the reader is re-
ferred to [9].
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PSEUDO-CONVEX FUNCTIONS 287

sary conditions for some v Em"

V(xo, yO) + vxvo,v(xO, yO) O,

V(xo, yO) + vvO,vb(xO, yO) =< 0,

yO,Vy(x, yO)
_

yO, vyvO,Vx(x, yO) 0,

yO >__ 0,

V(xo, yO) 0.

The first and last equations above, together with the assumption that the
Hessian of (x, yO) is nonzero at x, imply that v 0. Hence the above
necessary conditions become"

Vx(xo, yO) 0,

V(xo, yO) g(xo) <= O,

yO,Vb x, yO yO,g xo) O,

y>= O.

But from Theorem 1, with C Em, these conditions are sufficient for
x to be a solution of (PP).

(b) This part of the theorem will be established by means of the follow-
ing counter-example"

(PP1) min{-e- -x + 1 __< 0},
xE

(DP1) max {--e yx q- y 2xe- y O, y >= 0}.
x EI,y E

The solution of (PP1) is obviously x 1, whereas (DP1) has no maximum
solution but hs a zero supremum.

Finally, we give an application of pseudo-concavity outside the realm of
of mathematical programming. In particular, we extend a stability criterion
for equilibrium points of ordinary differential equations [8, Theorem 1].
TIEOREM 3. (Stability criterion). Let

f(t, x)

be a system of ordinary differential equations, where x andf are m-dimensional
vectors and 0 <= < . Let f(t, x) be continuous in the (x, t) space and let
f(t, O) 0 for 0 <- < , so that x 0 is an equilibrium point. If xf(t, x)
is a pseudo-concave function of x one for 0 <= < , then x O is a
stable equilibrium point.
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288 O.L. MANGASARIAN

Proof. Consider the Lyapunov function

V(x,t) XX

which is obviously positive definite. It follows that for 0 =< < ,
? x’ x’f(, x) <= o,

where the last inequality follows from the pseudo-concavity of x’f(t, x) it
x and the fact that f(t, 0) 0. Hence by Lyapunov’s stability theorem
[6], x 0 is a stable equilibrium point.

It should be noted that the above proof would not go through, had we
merely required that x’f(t, x) be qusi-concave instead of pseudo-concave.

3. Remarks on pseudo-convex functions. Properties 1 and 2 and the
fact that every differentiable strictly quasi-convex function is also quasi-
convex [5] establish a hierarchy among differentiable functions that is de-
picted in Fig. 1. In other words, if we let $1, S, Sa, and $4 represent the
sets of all differentiable functions defined on a convex set C in E that are,
respectively, convex, pseudo-convex, strictly quasi-convex, and quasi-
convex, then

S S S c= $4.

Functions belonging to S, S, or Sa share the property tha a local mini-
mum is a global minimum.. Functions belonging to $4 do not necessarily
have this t)ropcrty. The Kuhn-Tucker differential conditions are sufficient
for optimality, (see (2.18)), provided that g(x), i 1, n bclon.g to
S and 0(x) belongs to S or S=, but not if 0(x) belongs to Sa or S. I
seems that the pseudo-convexity of O(x) and the quasi-convexity of g(x)
are the weakest conditions that can be imposed so that relations (2.14) to
(2.17) gre sufficient for optimality.
There does not seem to be a simple extension of the concept of pseudo-

convexity to nondifferentiable functions. This may be due to the fact that
pseudo-convexity eliminates inflection points, and such points are easily
described by derivatives, but not otherwise.

Finally, it should be remarked that the convexity of the set C is inherent
in the definition of quasi-convexity. In contrast, the convexity of C is not
needed in the definition of pseudo-convexity. Thus, without the convexity
of C, we may have a pseudo-convex function that is not quasi-convex. For
example, over the nonconvex set

C {x]x E,x 0},
the function

{: for x<O,O(x) A- 1 for z > O,

is pseudo-convex bu obviously no quasi-convex, since C is nonconvex.
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PSEUDO-CONVEX FUNCTIONS 289

Strictly (\)uasi-Convex

Pseudo-Convex

Fro. 1

4. Acknowledgement. I am indebted to my colleagues, S. Karamardian
and J. Ponstein, for stimulating discussions on this paper.
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